continuation_ratio.Rd
Data set-up and calculation of marginal probabilities from a continuation ratio model
a numeric vector denoting the ordinal response variable.
character string specifying the direction of the continuation ratio
model; "forward"
corresponds to a discrete hazard function.
a numeric matrix of the linear predictor, with columns corresponding to the different levels of the ordinal response.
Function cr_setup()
is based on the cr.setup()
function from package
rms.
n <- 300 # number of subjects
K <- 8 # number of measurements per subject
t_max <- 15 # maximum follow-up time
# we constuct a data frame with the design:
# everyone has a baseline measurment, and then measurements at random follow-up times
DF <- data.frame(id = rep(seq_len(n), each = K),
time = c(replicate(n, c(0, sort(runif(K - 1, 0, t_max))))),
sex = rep(gl(2, n/2, labels = c("male", "female")), each = K))
# design matrices for the fixed and random effects
X <- model.matrix(~ sex * time, data = DF)[, -1]
Z <- model.matrix(~ 1, data = DF)
thrs <- c(-1.5, 0, 0.9) # thresholds for the different ordinal categories
betas <- c(-0.25, 0.24, -0.05) # fixed effects coefficients
D11 <- 0.48 # variance of random intercepts
D22 <- 0.1 # variance of random slopes
# we simulate random effects
b <- cbind(rnorm(n, sd = sqrt(D11)), rnorm(n, sd = sqrt(D22)))[, 1, drop = FALSE]
# linear predictor
eta_y <- drop(X %*% betas + rowSums(Z * b[DF$id, , drop = FALSE]))
# linear predictor for each category
eta_y <- outer(eta_y, thrs, "+")
# marginal probabilities per category
mprobs <- cr_marg_probs(eta_y)
# we simulate ordinal longitudinal data
DF$y <- unname(apply(mprobs, 1, sample, x = ncol(mprobs), size = 1, replace = TRUE))
# If you want to simulate from the backward formulation of the CR model, you need to
# change `eta_y <- outer(eta_y, thrs, "+")` to `eta_y <- outer(eta_y, rev(thrs), "+")`,
# and `mprobs <- cr_marg_probs(eta_y)` to `mprobs <- cr_marg_probs(eta_y, "backward")`
#################################################
# prepare the data
# If you want to fit the CR model under the backward formulation, you need to change
# `cr_vals <- cr_setup(DF$y)` to `cr_vals <- cr_setup(DF$y, "backward")`
cr_vals <- cr_setup(DF$y)
cr_data <- DF[cr_vals$subs, ]
cr_data$y_new <- cr_vals$y
cr_data$cohort <- cr_vals$cohort
# fit the model
fm <- mixed_model(y_new ~ cohort + sex * time, random = ~ 1 | id,
data = cr_data, family = binomial())
summary(fm)
#>
#> Call:
#> mixed_model(fixed = y_new ~ cohort + sex * time, random = ~1 |
#> id, data = cr_data, family = binomial())
#>
#> Data Descriptives:
#> Number of Observations: 4216
#> Number of Groups: 300
#>
#> Model:
#> family: binomial
#> link: logit
#>
#> Fit statistics:
#> log.Lik AIC BIC
#> -2401.604 4817.208 4843.134
#>
#> Random effects covariance matrix:
#> StdDev
#> (Intercept) 0.673666
#>
#> Fixed effects:
#> Estimate Std.Err z-value p-value
#> (Intercept) -1.6576 0.1138 -14.5648 < 1e-04
#> cohorty>=2 1.6832 0.0909 18.5238 < 1e-04
#> cohorty>=3 2.5602 0.1390 18.4215 < 1e-04
#> sexfemale -0.3591 0.1410 -2.5467 0.0108744
#> time 0.2590 0.0139 18.6439 < 1e-04
#> sexfemale:time -0.0473 0.0172 -2.7413 0.0061192
#>
#> Integration:
#> method: adaptive Gauss-Hermite quadrature rule
#> quadrature points: 11
#>
#> Optimization:
#> method: EM
#> converged: TRUE